1. International Federation of the Phonographic Industry.IFPI Global Music Report 2019 [EB/OL]. https://www.ifpi.org/news/IFPI-GLOBAL-MUSIC-REPORT-2019 , 2019 International Federation of the Phonographic Industry.IFPI Global Music Report 2019 [EB/OL]. https://www.ifpi.org/news/IFPI-GLOBAL-MUSIC-REPORT-2019, 2019
2. Lakomkin E , Zamani M A , Weber C , Emorl : Continuous acoustic emotion classification using deep reinforcement learning [C]∥ 2018 IEEE International Conferenceon Roboticsand Automation . Brisbane, Australia : IEEE , 2018: 4445-4450. Lakomkin E, Zamani M A, Weber C, Emorl: Continuous acoustic emotion classification using deep reinforcement learning [C]∥2018 IEEE International Conferenceon Roboticsand Automation. Brisbane, Australia: IEEE, 2018: 4445-4450.
3. Wen J. Research on music classification based on SVM-HMM hybrid model [D] . Zhongshan University , 2005 . Wen J. Research on music classification based on SVM-HMM hybrid model [D]. Zhongshan University, 2005.
4. Boser B E , Guyon I M , Vapnik V N . A training algorithm for optimal margin classifiers[A] . Proceedings of the fifth annual workshop on Computational learning theory [C]. 1992: 144-152 . Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. Proceedings of the fifth annual workshop on Computational learning theory [C]. 1992: 144-152.
5. Yang Y H , Liu C C , Chen H H . Music emotion classification: A fuzzy approach[A] . Proceedings of the 14th ACM international conference on Multimedia[C]. 2006: 81-84 . Yang Y H, Liu C C, Chen H H. Music emotion classification: A fuzzy approach[A]. Proceedings of the 14th ACM international conference on Multimedia[C]. 2006: 81-84.