Antialiasing through stochastic sampling

Author:

Dippé Mark A. Z.1,Wold Erling Henry2

Affiliation:

1. Berkeley Computer Graphics Laboratory, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California

2. Computer Science Division, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California

Abstract

Stochastic sampling techniques , in particular Poisson and fittered sampling, are developed and analyzed. These approaches allow the construction of alias-free approximations to continuous functions using discrete calculations. Stochastic sampling scatters high frequency information into broadband noise rather than generating the false patterne produced by regular sampling. The type of randomness used in the sampling process controls the spectral character of the noise. The average sampling rate and the function being sampled determine the amount of noise that is produced. Stochastic sampling is applied adaptively so that a greater number of samples are taken where the function varies most. An estimate is used to determine how many samples to take over a given region. Noise reducing filters are used to increase the efficacy of a given sampling rate. The filter width is adaptively controlled to further improve performance. Stochastic sampling can be applied spatiotemporally as well as to other aspects of scene simulation. Ray tracing is one example of an image synthesis approach that can be antialiased by stochastic sampling.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Cited by 226 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Poisson-Disk Sampling: Theory and Applications;Encyclopedia of Computer Graphics and Games;2024

2. Seeing Photons in Color;ACM Transactions on Graphics;2023-07-26

3. Patternshop: Editing Point Patterns by Image Manipulation;ACM Transactions on Graphics;2023-07-26

4. Cryogenic In-Memory Matrix-Vector Multiplication using Ferroelectric Superconducting Quantum Interference Device (FE-SQUID);2023 60th ACM/IEEE Design Automation Conference (DAC);2023-07-09

5. Image Super-Resolution Using T-Tetromino Pixels;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3