Semi-supervised Intrusive Appliance Load Monitoring in Smart Energy Monitoring System
Author:
Affiliation:
1. Macquarie University, Australia Macquarie Park, Sydney, Australia
2. The University of Adelaide, Australia North terrace, Adelaide, Australia
Abstract
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Link
https://dl.acm.org/doi/pdf/10.1145/3448415
Reference50 articles.
1. A hybrid event detection approach for non-intrusive load monitoring;Lu M.;IEEE Trans. Smart Grid,2020
2. Changho Shin Sunghwan Joo Jaeryun Yim Hyoseop Lee Taesup Moon and Wonjong Rhee. 2019. Subtask gated networks for non-intrusive load monitoring. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19) the 31st Innovative Applications of Artificial Intelligence Conference (IAAI’19) the 9th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI’19). 1150–1157. Changho Shin Sunghwan Joo Jaeryun Yim Hyoseop Lee Taesup Moon and Wonjong Rhee. 2019. Subtask gated networks for non-intrusive load monitoring. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19) the 31st Innovative Applications of Artificial Intelligence Conference (IAAI’19) the 9th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI’19). 1150–1157.
3. Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring;Makonin S.;IEEE Trans. Smart Grid,2016
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. NILM for Commercial Buildings: Deep Neural Networks Tackling Nonlinear and Multi-Phase Loads;Energies;2024-08-02
2. Load Identification Based on Attention Semisupervised Curriculum Label Learning With AVME-HT Feature;IEEE Transactions on Instrumentation and Measurement;2024
3. Maximizing Efficiency in Commercial Power Systems with an Optimized Load Classification and Identification Method Using Deep Learning and Ensemble Techniques;2023 IEEE World AI IoT Congress (AIIoT);2023-06-07
4. Comparative Study on Load Monitoring Approaches;Applied Sciences;2023-05-06
5. AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives;Artificial Intelligence Review;2022-10-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3