GhostCell: separating permissions from data in Rust

Author:

Yanovski Joshua1,Dang Hoang-Hai1,Jung Ralf1,Dreyer Derek1

Affiliation:

1. MPI-SWS, Germany

Abstract

The Rust language offers a promising approach to safe systems programming based on the principle of aliasing XOR mutability : a value may be either aliased or mutable, but not both at the same time. However, to implement pointer-based data structures with internal sharing, such as graphs or doubly-linked lists, we need to be able to mutate aliased state. To support such data structures, Rust provides a number of APIs that offer so-called interior mutability : the ability to mutate data via method calls on a shared reference. Unfortunately, the existing APIs sacrifice flexibility, concurrent access, and/or performance, in exchange for safety. In this paper, we propose a new Rust API called GhostCell which avoids such sacrifices by separating permissions from data : it enables the user to safely synchronize access to a collection of data via a single permission. GhostCell repurposes an old trick from typed functional programming: branded types (as exemplified by Haskell’s ST monad), which combine phantom types and rank-2 polymorphism to simulate a lightweight form of state-dependent types. We have formally proven the soundness of GhostCell by adapting and extending RustBelt, a semantic soundness proof for a representative subset of Rust, mechanized in Coq.

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Taming shared mutable states of operating systems in Rust;Science of Computer Programming;2024-12

2. When Is Parallelism Fearless and Zero-Cost with Rust?;Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures;2024-06-17

3. OxiDD;Lecture Notes in Computer Science;2024

4. Towards Safe HPC: Productivity and Performance via Rust Interfaces for a Distributed C++ Actors Library (Work in Progress);Proceedings of the 20th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes;2023-10-19

5. Reference Capabilities for Flexible Memory Management;Proceedings of the ACM on Programming Languages;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3