Fast and precise hybrid type inference for JavaScript

Author:

Hackett Brian1,Guo Shu-yu2

Affiliation:

1. Mozilla, Mountain View, CA, USA

2. Mozilla & University of California, Los Angeles, Mountain View, CA, USA

Abstract

JavaScript performance is often bound by its dynamically typed nature. Compilers do not have access to static type information, making generation of efficient, type-specialized machine code difficult. We seek to solve this problem by inferring types. In this paper we present a hybrid type inference algorithm for JavaScript based on points-to analysis. Our algorithm is fast , in that it pays for itself in the optimizations it enables. Our algorithm is also precise , generating information that closely reflects the program's actual behavior even when analyzing polymorphic code, by augmenting static analysis with run-time type barriers. We showcase an implementation for Mozilla Firefox's JavaScript engine, demonstrating both performance gains and viability. Through integration with the just-in-time (JIT) compiler in Firefox, we have improved performance on major benchmarks and JavaScript-heavy websites by up to 50%. Inference-enabled compilation is the default compilation mode as of Firefox 9.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CacheIR: The Benefits of a Structured Representation for Inline Caches;Proceedings of the 20th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes;2023-10-19

2. PyTER: effective program repair for Python type errors;Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2022-11-07

3. SimTyper: sound type inference for Ruby using type equality prediction;Proceedings of the ACM on Programming Languages;2021-10-20

4. Of JavaScript AOT compilation performance;Proceedings of the ACM on Programming Languages;2021-08-22

5. Finding data compatibility bugs with JSON subschema checking;Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis;2021-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3