On Mean-Optimal Robust Linear Discriminant Analysis

Author:

Li Xiangyu1ORCID,Wang Hua1ORCID

Affiliation:

1. Colorado School of Mines, Golden, CO, USA

Abstract

Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of the squared Euclidean distances that may not perform optimally on noisy datasets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared \(\ell_{2}\) -norm distance to center the data, which is not valid when the objective depends on other distance functions. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee that the solution is locally optimal rather than globally optimal. In this article, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to remove the mean value within data better, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The results of comprehensive experimental evaluations demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3