Static detection of asymptotic performance bugs in collection traversals

Author:

Olivo Oswaldo1,Dillig Isil1,Lin Calvin1

Affiliation:

1. University of Texas at Austin, USA

Abstract

This paper identifies and formalizes a prevalent class of asymptotic performance bugs called redundant traversal bugs and presents a novel static analysis for automatically detecting them. We evaluate our technique by implementing it in a tool called CLARITY and applying it to widely-used software packages such as the Google Core Collections Library, the Apache Common Collections, and the Apache Ant build tool. Across 1.6M lines of Java code, CLARITY finds 92 instances of redundant traversal bugs, including 72 that have never been previously reported, with just 5 false positives. To evaluate the performance impact of these bugs, we manually repair these programs and find that for an input size of 50,000, all repaired programs are at least 2.45 faster than their original code.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Generation and Evaluation of JMH Microbenchmark Suites From Unit Tests;IEEE Transactions on Software Engineering;2023-04-01

2. A Large-Scale Empirical Study of Real-Life Performance Issues in Open Source Projects;IEEE Transactions on Software Engineering;2023-02-01

3. A systematic mapping study of software performance research;Software: Practice and Experience;2023-01-02

4. Improving bug detection and fixing via code representation learning;Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings;2020-06-27

5. Improving bug detection via context-based code representation learning and attention-based neural networks;Proceedings of the ACM on Programming Languages;2019-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3