Making numerical program analysis fast

Author:

Singh Gagandeep1,Püschel Markus1,Vechev Martin1

Affiliation:

1. ETH Zurich, Switzerland

Abstract

Numerical abstract domains are a fundamental component in modern static program analysis and are used in a wide range of scenarios (e.g. computing array bounds, disjointness, etc). However, analysis with these domains can be very expensive, deeply affecting the scalability and practical applicability of the static analysis. Hence, it is critical to ensure that these domains are made highly efficient. In this work, we present a complete approach for optimizing the performance of the Octagon numerical abstract domain, a domain shown to be particularly effective in practice. Our optimization approach is based on two key insights: i) the ability to perform online decomposition of the octagons leading to a massive reduction in operation counts, and ii) leveraging classic performance optimizations from linear algebra such as vectorization, locality of reference, scalar replacement and others, for improving the key bottlenecks of the domain. Applying these ideas, we designed new algorithms for the core Octagon operators with better asymptotic runtime than prior work and combined them with the optimization techniques to achieve high actual performance. We implemented our approach in the Octagon operators exported by the popular APRON C library, thus enabling existing static analyzers using APRON to immediately benefit from our work. To demonstrate the performance benefits of our approach, we evaluated our framework on three published static analyzers showing massive speed-ups for the time spent in Octagon analysis (e.g., up to 146x) as well as significant end-to-end program analysis speed-ups (up to 18.7x). Based on these results, we believe that our framework can serve as a new basis for static analysis with the Octagon numerical domain.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precise Sparse Abstract Execution via Cross-Domain Interaction;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

2. Towards an Effective and Interpretable Refinement Approach for DNN Verification;2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS);2023-10-22

3. Abstract Interpretation: From 0, 1, to $$\infty $$;Intelligent Systems Reference Library;2023

4. Program analysis via efficient symbolic abstraction;Proceedings of the ACM on Programming Languages;2021-10-20

5. Polynomial invariant generation for non-deterministic recursive programs;Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation;2020-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3