LaminarIR: compile-time queues for structured streams

Author:

Ko Yousun1,Burgstaller Bernd1,Scholz Bernhard2

Affiliation:

1. Yonsei University, South Korea

2. University of Sydney, Australia

Abstract

Stream programming languages employ FIFO (first-in, first-out) semantics to model data channels between producers and consumers. A FIFO data channel stores tokens in a buffer that is accessed indirectly via read- and write-pointers. This indirect token-access decouples a producer’s write-operations from the read-operations of the consumer, thereby making dataflow implicit. For a compiler, indirect token-access obscures data-dependencies, which renders standard optimizations ineffective and impacts stream program performance negatively. In this paper we propose a transformation for structured stream programming languages such as StreamIt that shifts FIFO buffer management from run-time to compile-time and eliminates splitters and joiners, whose task is to distribute and merge streams. To show the effectiveness of our lowering transformation, we have implemented a StreamIt to C compilation framework. We have developed our own intermediate representation (IR) called LaminarIR, which facilitates the transformation. We report on the enabling effect of the LaminarIR on LLVM’s optimizations, which required the conversion of several standard StreamIt benchmarks from static to randomized input, to prevent computation of partial results at compile-time. We conducted our experimental evaluation on the Intel i7-2600K, AMD Opteron 6378, Intel Xeon Phi 3120A and ARM Cortex-A15 platforms. Our LaminarIR reduces data-communication on average by 35.9% and achieves platform-specific speedups between 3.73x and 4.98x over StreamIt. We reduce memory accesses by more than 60% and achieve energy savings of up to 93.6% on the Intel i7-2600K.

Funder

Australian Research Council

National Research Foundation of Korea

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference24 articles.

1. LaminarIR website. http://LaminarIR.github.io. LaminarIR website. http://LaminarIR.github.io.

2. Detecting equality of variables in programs

3. The CQL continuous query language: semantic foundations and query execution

4. Lime

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3