Message-Passing Algorithms for Sparse Network Alignment

Author:

Bayati Mohsen1,Gleich David F.2,Saberi Amin1,Wang Ying3

Affiliation:

1. Stanford University

2. Purdue University

3. Google

Abstract

Network alignment generalizes and unifies several approaches for forming a matching or alignment between the vertices of two graphs. We study a mathematical programming framework for network alignment problem and a sparse variation of it where only a small number of matches between the vertices of the two graphs are possible. We propose a new message passing algorithm that allows us to compute, very efficiently, approximate solutions to the sparse network alignment problems with graph sizes as large as hundreds of thousands of vertices. We also provide extensive simulations comparing our algorithms with two of the best solvers for network alignment problems on two synthetic matching problems, two bioinformatics problems, and three large ontology alignment problems including a multilingual problem with a known labeled alignment.

Funder

Library of Congress

U.S. Department of Homeland Security

Division of Human Resource Development

Division of Biological Infrastructure

Division of Mathematical Sciences

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference47 articles.

1. Bayati M. Borgs C. Chayes J. and Zecchina R. 2007a. Belief-propagation for weighted b-matchings on arbitrary graphs and its relation to linear programs with integer solutions. arxiv.org/abs/0709.1190. Bayati M. Borgs C. Chayes J. and Zecchina R. 2007a. Belief-propagation for weighted b-matchings on arbitrary graphs and its relation to linear programs with integer solutions. arxiv.org/abs/0709.1190.

2. Bayati M. Kim J. H. and Saberi A. 2007b. A sequential algorithm for generating random graphs. In Approximation Randomization and Combinatorial Optimization. Algorithms and Techniques vol. abs/cs/0702124. Springer Berlin 326--340. 10.1007/978-3-540-74208-1_24 Bayati M. Kim J. H. and Saberi A. 2007b. A sequential algorithm for generating random graphs. In Approximation Randomization and Combinatorial Optimization. Algorithms and Techniques vol. abs/cs/0702124. Springer Berlin 326--340. 10.1007/978-3-540-74208-1_24

3. Algorithms for Large, Sparse Network Alignment Problems

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Ranking-Based Preference Completion via Graph Pattern Matching and Rematching;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-04

2. Progressive Multiple Alignment of Graphs;Algorithms;2024-03-11

3. Modeling Multi-Scale Consistent Information for Network Alignment;2024

4. Enhancing Network Alignment through Multi-Scale Information Fusion;2023 IEEE International Conference on Knowledge Graph (ICKG);2023-12-01

5. cuAlign: Scalable Network Alignment on GPU Accelerators;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3