rNdN: Fast Query Compilation for NVIDIA GPUs

Author:

Krolik Alexander1ORCID,Verbrugge Clark1ORCID,Hendren Laurie1ORCID

Affiliation:

1. McGill University, Canada

Abstract

GPU database systems are an effective solution to query optimization, particularly with compilation and data caching. They fall short, however, in end-to-end workloads, as existing compiler toolchains are too expensive for use with short-running queries. In this work, we define and evaluate a runtime-suitable query compilation pipeline for NVIDIA GPUs that extracts high performance with only minimal optimization. In particular, our balanced approach successfully trades minor slowdowns in execution for major speedups in compilation, even as data sizes increase. We demonstrate performance benefits compared to both CPU and GPU database systems using interpreters and compilers, extending query compilation for GPUs beyond cached use cases.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference78 articles.

1. AMD. 2011. AMD Intermediate Language (IL). Retrieved from http://developer.amd.com/wordpress/media/2012/10/AMD_Intermediate_Language_(IL)_Specification_v2.pdf.

2. AMD. 2021. GCN Native ISA LLVM Code Generator–ROCm Documentation 1.0.0 documentation. Retrieved from https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/ROCm-Native-ISA.html.

3. AMD. 2022. Let’s Build Everything–GPUOpen. Retrieved from https://gpuopen.com/.

4. Taming Control Divergence in GPUs through Control Flow Linearization

5. Piotr Bialas and Adam Strzelecki. 2016. Benchmarking the cost of thread divergence in CUDA. In Parallel Processing and Applied Mathematics, Roman Wyrzykowski, Ewa Deelman, Jack Dongarra, Konrad Karczewski, Jacek Kitowski, and Kazimierz Wiatr (Eds.). Springer International, Cham, 570–579.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Analysis of Nvidia's Technological Innovations, Market Strategies, and Future Prospects;International Journal of Information Technologies and Systems Approach;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3