Affiliation:
1. MIT CSAIL
2. MIT CSAIL, Cambridge, MA
3. Intel Corporation, Hudson, MA
Abstract
Pipeline parallelism organizes a parallel program as a linear sequence of stages. Each stage processes elements of a data stream, passing each processed data element to the next stage, and then taking on a new element before the subsequent stages have necessarily completed their processing. Pipeline parallelism is used especially in streaming applications that perform video, audio, and digital signal processing. Three out of 13 benchmarks in PARSEC, a popular software benchmark suite designed for shared-memory multiprocessors, can be expressed as pipeline parallelism.
Whereas most concurrency platforms that support pipeline parallelism use a “construct-and-run” approach, this article investigates “on-the-fly” pipeline parallelism, where the structure of the pipeline emerges as the program executes rather than being specified
a priori
. On-the-fly pipeline parallelism allows the number of stages to vary from iteration to iteration and dependencies to be data dependent. We propose simple linguistics for specifying on-the-fly pipeline parallelism and describe a provably efficient scheduling algorithm, the P
iper
algorithm, which integrates pipeline parallelism into a work-stealing scheduler, allowing pipeline and fork-join parallelism to be arbitrarily nested. The P
iper
algorithm automatically throttles the parallelism, precluding “runaway” pipelines. Given a pipeline computation with
T
1
work and
T
∞
span (critical-path length), P
iper
executes the computation on
P
processors in
T
P
≤
T
1
/
P
+
O
(
T
∞+lg
P
) expected time. P
iper
also limits stack space, ensuring that it does not grow unboundedly with running time.
We have incorporated on-the-fly pipeline parallelism into a Cilk-based work-stealing runtime system. Our prototype Cilk-P implementation exploits optimizations such as “lazy enabling” and “dependency folding.” We have ported the three PARSEC benchmarks that exhibit pipeline parallelism to run on Cilk-P. One of these,
x264
, cannot readily be executed by systems that support only construct-and-run pipeline parallelism. Benchmark results indicate that Cilk-P has low serial overhead and good scalability. On
x264
, for example, Cilk-P exhibits a speedup of 13.87 over its respective serial counterpart when running on 16 processors.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A computational framework based on the dynamic pipeline approach;Journal of Logical and Algebraic Methods in Programming;2024-06
2. An Efficient Task-Parallel Pipeline Programming Framework;Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region;2024-01-18
3. Studying the expressiveness and performance of parallelization abstractions for linear pipelines;Proceedings of the 14th International Workshop on Programming Models and Applications for Multicores and Manycores;2023-02-25
4. ODIN: Overcoming Dynamic Interference in iNference Pipelines;Euro-Par 2023: Parallel Processing;2023
5. Accelerating Face De-identification System for Real-time Video Surveillance Services;2022 13th International Conference on Information and Communication Technology Convergence (ICTC);2022-10-19