A generic component model for building systems software

Author:

Coulson Geoff1,Blair Gordon1,Grace Paul1,Taiani Francois1,Joolia Ackbar1,Lee Kevin1,Ueyama Jo1,Sivaharan Thirunavukkarasu1

Affiliation:

1. Lancaster University, Lancaster, England

Abstract

Component-based software structuring principles are now commonplace at the application level; but componentization is far less established when it comes to building low-level systems software. Although there have been pioneering efforts in applying componentization to systems-building, these efforts have tended to target specific application domains (e.g., embedded systems, operating systems, communications systems, programmable networking environments, or middleware platforms). They also tend to be targeted at specific deployment environments (e.g., standard personal computer (PC) environments, network processors, or microcontrollers). The disadvantage of this narrow targeting is that it fails to maximize the genericity and abstraction potential of the component approach. In this article, we argue for the benefits and feasibility of a generic yet tailorable approach to component-based systems-building that offers a uniform programming model that is applicable in a wide range of systems-oriented target domains and deployment environments. The component model, called OpenCom , is supported by a reflective runtime architecture that is itself built from components. After describing OpenCom and evaluating its performance and overhead characteristics, we present and evaluate two case studies of systems we have built using OpenCom technology, thus illustrating its benefits and its general applicability.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BrickOS: specialized kernels for heterogeneous hardware resources;SCIENTIA SINICA Informationis;2024-03-01

2. A Self-Distributing System Framework for the Computing Continuum;2023 32nd International Conference on Computer Communications and Networks (ICCCN);2023-07

3. Hatch: Self-distributing systems for data centers;Future Generation Computer Systems;2022-07

4. A model-driven middleware approach to reduce the semantic gap between application domains and the generic infrastructure of smart cities;2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C);2021-10

5. A Programming Language for Sound Self-Adaptive Systems;2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS);2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3