TrilobiteG

Author:

Woithe Hans Christian1,Kremer Ulrich1

Affiliation:

1. Rutgers University

Abstract

Programming autonomous systems can be challenging because many programming decisions must be made in real time and under stressful conditions, such as on a battle field, during a short communication window, or during a storm at sea. As such, new programming designs are needed to reflect these specific and extreme challenges. TrilobiteG is a programming architecture for buoyancy-driven autonomous underwater vehicles (AUVs), called gliders. Gliders are designed to spend weeks to months in the ocean, where they operate fully autonomously while submerged and can only communicate via satellite during their limited time at the surface. Based on the experience gained from a seven year long collaboration with two oceanographic institutes, the TrilobiteG architecture has been developed with the main goal of enabling users to run more effective missions. The TrilobiteG programming environment consists of a domain-specific language called ALGAE, a lower level service layer, and a set of real-time and faster-than-real-time simulators. The system has been used to program novel and robust glider behaviors, as well as to find software problems that otherwise may have remained undetected, with potentially catastrophic results. We believe that TrilobiteG can serve as a blueprint for other autonomous systems as well, and that TrilobiteG will motivate and enable a broader scientific community to work on extreme, real-world problems by using the simulation infrastructure.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference43 articles.

1. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. Oceanic Engineering;Alvarez A.;IEEE Journal of,2004

2. Green

3. Nested autonomy for unmanned marine vehicles with MOOS-IvP

4. R. I. Carnegie Mellon Robotics Academy. RobotC. http//www.robotc.net. R. I. Carnegie Mellon Robotics Academy. RobotC. http//www.robotc.net.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of Model Driven Engineering in robotics;Journal of Computer Languages;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3