Multi-donor Neural Transfer Learning for Genetic Programming

Author:

Wild Alexander1ORCID,Porter Barry1ORCID

Affiliation:

1. Lancaster University, Lancaster, UK

Abstract

Genetic programming (GP), for the synthesis of brand new programs, continues to demonstrate increasingly capable results towards increasingly complex problems. A key challenge in GP is how to learn from the past so that the successful synthesis of simple programs can feed into more challenging unsolved problems. Transfer Learning (TL) in the literature has yet to demonstrate an automated mechanism to identify existing donor programs with high-utility genetic material for new problems, instead relying on human guidance. In this article we present a transfer learning mechanism for GP which fills this gap: we use a Turing-complete language for synthesis, and demonstrate how a neural network (NN) can be used to guide automated code fragment extraction from previously solved problems for injection into future problems. Using a framework which synthesises code from just 10 input-output examples, we first study NN ability to recognise the presence of code fragments in a larger program, then present an end-to-end system which takes only input-output examples and generates code fragments as it solves easier problems, then deploys selected high-utility fragments to solve harder ones. The use of NN-guided genetic material selection shows significant performance increases, on average doubling the percentage of programs that can be successfully synthesised when tested on two different problem corpora, compared with a non-transfer-learning GP baseline.

Funder

Leverhulme Trust Research

Publisher

Association for Computing Machinery (ACM)

Reference40 articles.

1. A genetic programming approach to feature construction for ensemble learning in skin cancer detection

2. Matej Balog, Alexander Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to write programs. In Proceedings of the ICLR’17.Retrieved from https://www.microsoft.com/en-us/research/publication/deepcoder-learning-write-programs/.

3. Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks;Bartlett Peter L.;Journal of Machine Learning Research,2019

4. Rudy Bunel Matthew Hausknecht Jacob Devlin Rishabh Singh and Pushmeet Kohli. 2018. Leveraging grammar and reinforcement learning for neural program synthesis. In ICLR .

5. Mark Chen Jerry Tworek Heewoo Jun Qiming Yuan Henrique Ponde de Oliveira Pinto Jared Kaplan Harri Edwards Yuri Burda Nicholas Joseph Greg Brockman Alex Ray Raul Puri Gretchen Krueger Michael Petrov Heidy Khlaaf Girish Sastry Pamela Mishkin Brooke Chan Scott Gray Nick Ryder Mikhail Pavlov Alethea Power Lukasz Kaiser Mohammad Bavarian Clemens Winter Philippe Tillet Felipe Petroski Such Dave Cummings Matthias Plappert Fotios Chantzis Elizabeth Barnes Ariel Herbert-Voss William Hebgen Guss Alex Nichol Alex Paino Nikolas Tezak Jie Tang Igor Babuschkin Suchir Balaji Shantanu Jain William Saunders Christopher Hesse Andrew N. Carr Jan Leike Josh Achiam Vedant Misra Evan Morikawa Alec Radford Matthew Knight Miles Brundage Mira Murati Katie Mayer Peter Welinder Bob McGrew Dario Amodei Sam McCandlish Ilya Sutskever and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained on Code. (2021). arXiv:2107.03374 [cs.LG].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3