Learning Perceptual Causality from Video

Author:

Fire Amy1,Zhu Song-Chun1

Affiliation:

1. University of California, Los Angeles, CA

Abstract

Perceptual causality is the perception of causal relationships from observation. Humans, even as infants, form such models from observation of the world around them [Saxe and Carey 2006]. For a deeper understanding, the computer must make similar models through the analogous form of observation: video. In this article, we provide a framework for the unsupervised learning of this perceptual causal structure from video. Our method takes action and object status detections as input and uses heuristics suggested by cognitive science research to produce the causal links perceived between them. We greedily modify an initial distribution featuring independence between potential causes and effects by adding dependencies that maximize information gain. We compile the learned causal relationships into a Causal And-Or Graph, a probabilistic and-or representation of causality that adds a prior to causality. Validated against human perception, experiments show that our method correctly learns causal relations, attributing status changes of objects to causing actions amid irrelevant actions. Our method outperforms Hellinger’s χ 2 -statistic by considering hierarchical action selection, and outperforms the treatment effect by discounting coincidental relationships.

Funder

Office of Naval Research, under MURI

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Agree to Disagree: Exploring Partial Semantic Consistency Against Visual Deviation for Compositional Zero-Shot Learning;IEEE Transactions on Cognitive and Developmental Systems;2024-08

2. Extraction of object-action and object-state associations from Knowledge Graphs;Journal of Web Semantics;2024-07

3. Perceiving Actions via Temporal Video Frame Pairs;ACM Transactions on Intelligent Systems and Technology;2024-05-17

4. Why is that a Good or Not a Good Frying Pan? – Knowledge Representation for Functions of Objects and Tools for Design Understanding, Improvement, and Generation;2023 IEEE Symposium Series on Computational Intelligence (SSCI);2023-12-05

5. Causality extraction: A comprehensive survey and new perspective;Journal of King Saud University - Computer and Information Sciences;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3