Contention-Detectable Mechanism for Receiver-Initiated MAC

Author:

Liu Daibo1ORCID,Cao Zhichao2,Liu Mingyan3,Hou Mengshu4,Jinag Hongbo1

Affiliation:

1. Hunan University, Changsha, Hunan Province, China

2. Tsinghua University, Beijing, China

3. University of Michigan, Michigan, USA

4. University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China

Abstract

The energy efficiency and delivery robustness are two critical issues for low duty-cycled wireless sensor networks. The asynchronous receiver-initiated duty-cycling media access control (MAC) protocols have shown their effectiveness through various studies. In receiver-initiated MACs, packet transmission is triggered by the probe of receiver. However, it suffers from the performance degradation incurred by packet collision, especially under bursty traffic. Several protocols have been proposed to address this problem, but their performance is restricted by the unnecessary backoff time and long negotiation process. In this article, we present CD-MAC, an energy-efficient and robust contention-detectable mechanism for addressing the collision-catching problem in receiver-initiated MACs. By exploring the temporal diversity of the acknowledgments, a receiver recognizes the potential senders and subsequently polls individual senders one by one. On that basis, CD-MAC can successfully avoid packet collision even though multiple senders have data packets to transmit to the same receiver. We implement CD-MAC in TinyOS and evaluate its performance on an indoor testbed with single-hop and multi-hop network scenarios. The results show that CD-MAC can significantly improve throughput by 1.72 times compared with the state-of-the-art receiver-initiated MAC protocol under bursty traffic loads. The results also demonstrate that CD-MAC can effectively mitigate the influence of hidden terminal problem and adapt to network dynamics well.

Funder

Fundamental Research Funds for the Central Universities

NSF

NSFC

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Task Offloading with Dependency Guarantees in Ultra-Dense Edge Networks;2019 IEEE Global Communications Conference (GLOBECOM);2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3