Developing and performance evaluation of a new Arabic heavy/light stemmer

Author:

Zeroual Imad1,Boudchiche Mohamed1,Mazroui Azzeddine1,Lakhouaja Abdelhak1

Affiliation:

1. Mohammed First University, Computer Sciences Laboratory, Oujda, Morocco

Publisher

ACM

Reference54 articles.

1. Building an Effective Rule-Based Light Stemmer for Arabic Language to Improve Search Effectiveness;Ababneh M.;International Arab Journal of Information Technology (IAJIT).,2012

2. Abainia K. et al. 2016. A novel robust Arabic light stemmer. Journal of Experimental & Theoretical Artificial Intelligence. (2016) 1--17. Abainia K. et al. 2016. A novel robust Arabic light stemmer. Journal of Experimental & Theoretical Artificial Intelligence. (2016) 1--17.

3. Stemming impact on Arabic text categorization performance: A survey

4. Aldabbas O. et al. 2016. Arabic Light Stemmer Based on Regular Expression. (2016). Aldabbas O. et al. 2016. Arabic Light Stemmer Based on Regular Expression. (2016).

5. Algarni M. 2016. Light morphology and arabic information retrieval. (2016). Algarni M. 2016. Light morphology and arabic information retrieval. (2016).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building a Multilevel Inflection Handling Stemmer to Improve Search Effectiveness for Urdu Language;IEEE Access;2024

2. A new classification model with a multi-layer dimensionality reduction approach;2022 11th International Symposium on Signal, Image, Video and Communications (ISIVC);2022-05-18

3. Studying the effect of characteristic vector alteration on Arabic sentiment classification;Journal of King Saud University - Computer and Information Sciences;2021-09

4. Improved Document Categorization Through Feature-Rich Combinations;Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021);2021

5. Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations;Organizational Research Methods;2020-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3