Schedule Synthesis for Halide Pipelines on GPUs

Author:

Sioutas Savvas1,Stuijk Sander1,Basten Twan2,Corporaal Henk1,Somers Lou3

Affiliation:

1. Eindhoven University of Technology, Eindhoven, The Netherlands

2. Eindhoven University of Technology and ESI, TNO, Eindhoven, The Netherlands

3. Canon Production Printing and Eindhoven University of Technology, The Netherlands

Abstract

The Halide DSL and compiler have enabled high-performance code generation for image processing pipelines targeting heterogeneous architectures through the separation of algorithmic description and optimization schedule. However, automatic schedule generation is currently only possible for multi-core CPU architectures. As a result, expert knowledge is still required when optimizing for platforms with GPU capabilities. In this work, we extend the current Halide Autoscheduler with novel optimization passes to efficiently generate schedules for CUDA-based GPU architectures. We evaluate our proposed method across a variety of applications and show that it can achieve performance competitive with that of manually tuned Halide schedules, or in many cases even better performance. Experimental results show that our schedules are on average 10% faster than manual schedules and over 2× faster than previous autoscheduling attempts.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Importance of the Execution Schedule for Bayesian Inference;ACM Transactions on Probabilistic Machine Learning;2024-08-31

2. Guided Equality Saturation;Proceedings of the ACM on Programming Languages;2024-01-05

3. SlidingConv: Domain-Specific Description of Sliding Discrete Cosine Transform Convolution for Halide;IEEE Access;2024

4. CustomHalide – A new plugin of clang for loop optimization;Proceedings of the 2023 9th International Conference on Computing and Artificial Intelligence;2023-03-17

5. Lorien;Proceedings of the ACM Symposium on Cloud Computing;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3