New cache designs for thwarting software cache-based side channel attacks

Author:

Wang Zhenghong1,Lee Ruby B.1

Affiliation:

1. Princeton University, Princeton, NJ

Abstract

Software cache-based side channel attacks are a serious new class of threats for computers. Unlike physical side channel attacks that mostly target embedded cryptographic devices, cache-based side channel attacks can also undermine general purpose systems. The attacks are easy to perform, effective on most platforms, and do not require special instruments or excessive computation power. In recently demonstrated attacks on software implementations of ciphers like AES and RSA, the full key can be recovered by an unprivileged user program performing simple timing measurements based on cache misses. We first analyze these attacks, identifying cache interference as the root cause of these attacks. We identify two basic mitigation approaches: the partition-based approach eliminates cache interference whereas the randomization-based approach randomizes cache interference so that zero information can be inferred. We present new security-aware cache designs, the Partition-Locked cache (PLcache) and Random Permutation cache (RPcache), analyze and prove their security, and evaluate their performance. Our results show that our new cache designs with built-in security can defend against cache-based side channel attacks in general-rather than only specific attacks on a given cryptographic algorithm-with very little performance degradation and hardware cost.

Publisher

Association for Computing Machinery (ACM)

Cited by 247 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prefender: A Prefetching Defender Against Cache Side Channel Attacks as a Pretender;IEEE Transactions on Computers;2024-06

2. SecurityCloak: Protection against cache timing and speculative memory access attacks;Journal of Systems Architecture;2024-05

3. RSPP: Restricted Static Pseudo-Partitioning for Mitigation of Cross-Core Covert Channel Attacks;ACM Transactions on Design Automation of Electronic Systems;2024-01-15

4. Deep Learning-Based Detection for Multiple Cache Side-Channel Attacks;IEEE Transactions on Information Forensics and Security;2024

5. RECAST: Mitigating Conflict-Based Cache Attacks Through Fine-Grained Dynamic Mapping;IEEE Transactions on Information Forensics and Security;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3