Affiliation:
1. University of Wisconsin-Madison, Madison, WI
2. Hewlett Packard Labs, Palo Alto, CA
Abstract
High availability is an increasingly important requirement for enterprise systems, often valued more than performance. Systems designed for high availability typically use redundant hardware for error detection and continued uptime in the event of a failure. Chip multiprocessors with an abundance of identical resources like cores, cache and interconnection networks would appear to be ideal building blocks for implementing high availability solutions on chip. However, doing so poses significant challenges with respect to error containment and faulty component replacement. Increasing silicon and transient fault rates with future technology scaling exacerbate the problem. This paper proposes a novel, cost-effective, architecture for high availability systems built from future multi-core processors. We propose a new chip multiprocessor architecture that provides
configurable isolation
for fault containment and component retirement, based upon cost-effective modifications to commodity designs. The design is evaluated for a state-of-the-art industrial fault model and the proposed architecture is shown to provide effective fault isolation and graceful degradation even when the failure rate is high.
Publisher
Association for Computing Machinery (ACM)
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献