Not So Fair: The Impact of Presumably Fair Machine Learning Models

Author:

Jorgensen Mackenzie1ORCID,Richert Hannah2ORCID,Black Elizabeth1ORCID,Criado Natalia3ORCID,Such Jose1ORCID

Affiliation:

1. King's College London, United Kingdom

2. Universität Osnabrück, Germany

3. Universitat Politecnica de Valencia, Spain

Funder

Engineering and Physical Sciences Research Council

German Academic Exchange Service

Publisher

ACM

Reference45 articles.

1. Alekh Agarwal , Alina Beygelzimer , Miroslav Dudik , John Langford , and Hanna Wallach . 2018 . A Reductions Approach to Fair Classification . In Proceedings of the 35th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 80) , Jennifer Dy and Andreas Krause (Eds.). PMLR, 60–69. Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna Wallach. 2018. A Reductions Approach to Fair Classification. In Proceedings of the 35th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 60–69.

2. Solon Barocas Moritz Hardt and Arvind Narayanan. 2019. Fairness and Machine Learning. fairmlbook.org. http://www.fairmlbook.org. Solon Barocas Moritz Hardt and Arvind Narayanan. 2019. Fairness and Machine Learning. fairmlbook.org. http://www.fairmlbook.org.

3. AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias

4. Ruha Benjamin . 2019. Race After Technology: Abolitionist Tools for the New Jim Code . Polity , Medford, MA . Ruha Benjamin. 2019. Race After Technology: Abolitionist Tools for the New Jim Code. Polity, Medford, MA.

5. Sarah Bird , Miroslav Dudík , Hanna Wallach , and Kathleen Walker . 2020 . Fairlearn: A toolkit for assessing and improving fairness in AI. Technical Report. Microsoft. 6 pages. Sarah Bird, Miroslav Dudík, Hanna Wallach, and Kathleen Walker. 2020. Fairlearn: A toolkit for assessing and improving fairness in AI. Technical Report. Microsoft. 6 pages.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural Interventions and the Dynamics of Inequality;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

2. Policy advice and best practices on bias and fairness in AI;Ethics and Information Technology;2024-04-29

3. Investigating the Legality of Bias Mitigation Methods in the United Kingdom;IEEE Technology and Society Magazine;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3