1. Alekh Agarwal , Alina Beygelzimer , Miroslav Dudik , John Langford , and Hanna Wallach . 2018 . A Reductions Approach to Fair Classification . In Proceedings of the 35th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 80) , Jennifer Dy and Andreas Krause (Eds.). PMLR, 60–69. Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna Wallach. 2018. A Reductions Approach to Fair Classification. In Proceedings of the 35th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 60–69.
2. Solon Barocas Moritz Hardt and Arvind Narayanan. 2019. Fairness and Machine Learning. fairmlbook.org. http://www.fairmlbook.org. Solon Barocas Moritz Hardt and Arvind Narayanan. 2019. Fairness and Machine Learning. fairmlbook.org. http://www.fairmlbook.org.
3. AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias
4. Ruha Benjamin . 2019. Race After Technology: Abolitionist Tools for the New Jim Code . Polity , Medford, MA . Ruha Benjamin. 2019. Race After Technology: Abolitionist Tools for the New Jim Code. Polity, Medford, MA.
5. Sarah Bird , Miroslav Dudík , Hanna Wallach , and Kathleen Walker . 2020 . Fairlearn: A toolkit for assessing and improving fairness in AI. Technical Report. Microsoft. 6 pages. Sarah Bird, Miroslav Dudík, Hanna Wallach, and Kathleen Walker. 2020. Fairlearn: A toolkit for assessing and improving fairness in AI. Technical Report. Microsoft. 6 pages.