Data-Driven Parameterized Corner Synthesis for Efficient Validation of Perception Systems for Autonomous Driving

Author:

Yu Handi1ORCID,Li Xin1ORCID

Affiliation:

1. Duke University, Durham, NC, USA

Abstract

Today's automotive cyber-physical systems for autonomous driving aim to enhance driving safety by replacing the uncertainties posed by human drivers with standard procedures of automated systems. However, the accuracy of in-vehicle perception systems may significantly vary under different operational conditions (e.g., fog density, light condition, etc.) and consequently degrade the reliability of autonomous driving. A perception system for autonomous driving must be carefully validated with an extremely large dataset collected under all possible operational conditions in order to ensure its robustness. The aforementioned dataset required for validation, however, is expensive or even impossible to acquire in practice, since most operational corners rarely occur in a real-world environment. In this paper, we propose to generate synthetic datasets at a variety of operational corners by using a parameterized cycle-consistent generative adversarial network (PCGAN) . The proposed PCGAN is able to learn from an image dataset recorded at real-world operational conditions with only a few samples at corners and synthesize a large dataset at a given operational corner. By taking STOP sign detection as an example, our numerical experiments demonstrate that the proposed approach is able to generate high-quality synthetic datasets to facilitate accurate validation.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference54 articles.

1. Cyber-Physical Specification Mismatches

2. Automotive Cyber–Physical Systems: A Tutorial Introduction

3. Society of Automotive Engineers International. 2018. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. J3016_201806.

4. Parallel scheduling for cyber-physical systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3