Diffusion Posterior Illumination for Ambiguity-Aware Inverse Rendering

Author:

Lyu Linjie1ORCID,Tewari Ayush2,Habermann Marc1,Saito Shunsuke3,Zollhöfer Michael3,Leimkühler Thomas1,Theobalt Christian1

Affiliation:

1. Max-Planck-Institut für Informatik, Germany

2. MIT CSAIL, USA

3. Reality Labs Research, USA

Abstract

Inverse rendering, the process of inferring scene properties from images, is a challenging inverse problem. The task is ill-posed, as many different scene configurations can give rise to the same image. Most existing solutions incorporate priors into the inverse-rendering pipeline to encourage plausible solutions, but they do not consider the inherent ambiguities and the multi-modal distribution of possible decompositions. In this work, we propose a novel scheme that integrates a denoising diffusion probabilistic model pre-trained on natural illumination maps into an optimization framework involving a differentiable path tracer. The proposed method allows sampling from combinations of illumination and spatially-varying surface materials that are, both, natural and explain the image observations. We further conduct an extensive comparative study of different priors on illumination used in previous work on inverse rendering. Our method excels in recovering materials and producing highly realistic and diverse environment map samples that faithfully explain the illumination of the input images.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference69 articles.

1. Brian DO Anderson . 1982. Reverse-time diffusion equation models. Stochastic Processes and their Applications 12, 3 ( 1982 ), 313--326. Brian DO Anderson. 1982. Reverse-time diffusion equation models. Stochastic Processes and their Applications 12, 3 (1982), 313--326.

2. Jonathan T. Barron , Ben Mildenhall , Dor Verbin , Pratul P. Srinivasan , and Peter Hedman . 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR ( 2022 ). Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022).

3. Lambertian reflectance and linear subspaces

4. The Perception-Distortion Tradeoff

5. Brent Burley . 2015. Extending the Disney BRDF to a BSDF with integrated subsurface scattering. Physically Based Shading in Theory and Practice'SIGGRAPH Course ( 2015 ). Brent Burley. 2015. Extending the Disney BRDF to a BSDF with integrated subsurface scattering. Physically Based Shading in Theory and Practice'SIGGRAPH Course (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3