Affiliation:
1. ETH Zurich, Switzerland
2. Peking University, China
3. Princeton University, USA
Abstract
The floating-point representation provides widely-used data types (such as “float” and “double”) for modern numerical software. Numerical errors are inherent due to floating-point’s approximate nature, and pose an important, well-known challenge. It is nontrivial to fix/repair numerical code to reduce numerical errors — it requires either
numerical expertise
(for manual fixing) or high-precision
oracles
(for automatic repair); both are difficult requirements. To tackle this challenge, this paper introduces a
principled dynamic approach
that is
fully automated
and
oracle-free
for effectively repairing floating-point errors. The key of our approach is the novel notion of
micro-structure
that characterizes structural patterns of floating-point errors. We leverage micro-structures’ statistical information on floating-point errors to effectively guide repair synthesis and validation. Compared with existing state-of-the-art repair approaches, our work is fully automatic and has the distinctive benefit of not relying on the difficult to obtain high-precision oracles. Evaluation results on 36 commonly-used numerical programs show that our approach is highly efficient and effective: (1) it is able to synthesize repairs instantaneously, and (2) versus the original programs, the repaired programs have orders of magnitude smaller floating-point errors, while having faster runtime performance.
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献