Transfer Learning Approach for Botnet Detection Based on Recurrent Variational Autoencoder

Author:

Kim Jeeyung1,Sim Alex1,Kim Jinoh2,Wu Kesheng1,Hahm Jaegyoon3

Affiliation:

1. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

2. Texas A&M University, Commerce, TX, USA

3. KISTI, Daejeon, South Korea

Funder

Korea Institute of Science and Technology Information (KISTI)

the Office of Advanced Scientific Computing Research Office of Science of the U.S. Department of Energy

Publisher

ACM

Reference35 articles.

1. Basil Alothman. 2018. Similarity-Based Instance Transfer Learning for Botnet Detection. Basil Alothman. 2018. Similarity-Based Instance Transfer Learning for Botnet Detection.

2. J Andrews Thomas Tanay Edward J Morton and Lewis D Griffin. 2016. Transfer representation-learning for anomaly detection. JMLR. J Andrews Thomas Tanay Edward J Morton and Lewis D Griffin. 2016. Transfer representation-learning for anomaly detection. JMLR.

3. Towards effective feature selection in machine learning-based botnet detection approaches

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RMDNet-Deep Learning Paradigms for Effective Malware Detection and Classification;IEEE Access;2024

2. Deep transfer learning for intrusion detection in industrial control networks: A comprehensive review;Journal of Network and Computer Applications;2023-11

3. Federated Learning-Based Intrusion Detection System for IoT Environments with Locally Adapted Model;2023 IEEE 10th International Conference on Cyber Security and Cloud Computing (CSCloud)/2023 IEEE 9th International Conference on Edge Computing and Scalable Cloud (EdgeCom);2023-07

4. A Comparative Analysis of various Dimensionality Reduction Techniques on N-BaIoT Dataset for IoT Botnet Detection;2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS);2023-04-05

5. An Explainable Deep Neural Framework for Trustworthy Network Intrusion Detection;2022 10th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud);2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3