Sentence Semantic Matching Based on 3D CNN for Human–Robot Language Interaction

Author:

Lu Wenpeng1,Yu Rui1,Wang Shoujin2,Wang Can3,Jian Ping4,Huang Heyan4

Affiliation:

1. School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China

2. Department of Computing, Macquarie University, Sydney, Australia

3. School of Information and Communication Technology, Griffith University, Gold Coast, Australia

4. School of Computer Science and Technology, Beijing Institute of Technology, Zhongguancun, Beijing, China

Abstract

The development of cognitive robotics brings an attractive scenario where humans and robots cooperate to accomplish specific tasks. To facilitate this scenario, cognitive robots are expected to have the ability to interact with humans with natural language, which depends on natural language understanding ( NLU ) technologies. As one core task in NLU, sentence semantic matching ( SSM ) has widely existed in various interaction scenarios. Recently, deep learning–based methods for SSM have become predominant due to their outstanding performance. However, each sentence consists of a sequence of words, and it is usually viewed as one-dimensional ( 1D ) text, leading to the existing available neural models being restricted into 1D sequential networks. A few researches attempt to explore the potential of 2D or 3D neural models in text representation. However, it is hard for their works to capture the complex features in texts, and thus the achieved performance improvement is quite limited. To tackle this challenge, we devise a novel 3D CNN-based SSM ( 3DSSM ) method for human–robot language interaction. Specifically, first, a specific architecture called feature cube network is designed to transform a 1D sentence into a multi-dimensional representation named as semantic feature cube. Then, a 3D CNN module is employed to learn a semantic representation for the semantic feature cube by capturing both the local features embedded in word representations and the sequential information among successive words in a sentence. Given a pair of sentences, their representations are concatenated together to feed into another 3D CNN to capture the interactive features between them to generate the final matching representation. Finally, the semantic matching degree is judged with the sigmoid function by taking the learned matching representation as the input. Extensive experiments on two real-world datasets demonstrate that 3DSSM is able to achieve comparable or even better performance over the state-of-the-art competing methods.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Key Program of Science and Technology of Shandong Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3