A Tradeoff Analysis of FPGAs, GPUs, and Multicores for Sliding-Window Applications

Author:

Cooke Patrick1,Fowers Jeremy1,Brown Greg1,Stitt Greg1

Affiliation:

1. University of Florida, Gainesville, USA

Abstract

The increasing usage of hardware accelerators such as Field-Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs) has significantly increased application design complexity. Such complexity results from a larger design space created by numerous combinations of accelerators, algorithms, and hw/sw partitions. Exploration of this increased design space is critical due to widely varying performance and energy consumption for each accelerator when used for different application domains and different use cases. To address this problem, numerous studies have evaluated specific applications across different architectures. In this article, we analyze an important domain of applications, referred to as sliding-window applications , implemented on FPGAs, GPUs, and multicore CPUs. For each device, we present optimization strategies and analyze use cases where each device is most effective. The results show that, for large input sizes, FPGAs can achieve speedups of up to 5.6× and 58× compared to GPUs and multicore CPUs, respectively, while also using up to an order of magnitude less energy. For small input sizes and applications with frequency-domain algorithms, GPUs generally provide the best performance and energy.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference31 articles.

1. Altera. 2013. Altera’s User-Customizable ARM-Based SoC. (2013). Retrieved from http://www.altera.com/literature/br/br-soc-fpga.pdf. Altera. 2013. Altera’s User-Customizable ARM-Based SoC. (2013). Retrieved from http://www.altera.com/literature/br/br-soc-fpga.pdf.

2. Performance comparison of FPGA, GPU and CPU in image processing

3. A Configurable Processor Synthesis System

4. AMD Fusion APU: Llano

5. Real-Time Optical Flow Calculations on FPGA and GPU Architectures: A Comparison Study

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3