Adversarial Examples Against Deep Neural Network based Steganalysis
Author:
Affiliation:
1. University of Science and Technology of China, Hefei, Anhui, China
Funder
Natural Science Foundation of China
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3206004.3206012
Reference24 articles.
1. Shumeet Baluja and Ian Fischer . 2017. Adversarial Transformation Networks: Learning to Generate Adversarial Examples. arXiv preprint arXiv:1703.09387 (2017). Shumeet Baluja and Ian Fischer . 2017. Adversarial Transformation Networks: Learning to Generate Adversarial Examples. arXiv preprint arXiv:1703.09387 (2017).
2. Patrick Bas Tomávs Filler and Tomávs Pevnỳ . 2011. " Break Our Steganographic System": The Ins and Outs of Organizing BOSS Information Hiding. Springer 59--70. Patrick Bas Tomávs Filler and Tomávs Pevnỳ . 2011. " Break Our Steganographic System": The Ins and Outs of Organizing BOSS Information Hiding. Springer 59--70.
3. Rich Models for Steganalysis of Digital Images
4. Ian J Goodfellow Jonathon Shlens and Christian Szegedy . 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014). Ian J Goodfellow Jonathon Shlens and Christian Szegedy . 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).
Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A survey on Deep-Learning-based image steganography;Expert Systems with Applications;2024-11
2. Improving image steganography security via ensemble steganalysis and adversarial perturbation minimization;Journal of Information Security and Applications;2024-09
3. An image steganography algorithm without data embedding based on style transfer and zero-watermarking;Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024);2024-07-11
4. Comprehensive survey on image steganalysis using deep learning;Array;2024-07
5. Enhancing steganography capacity through multi-stage generator model in generative adversarial network based image concealment;Journal of Electronic Imaging;2024-05-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3