Affiliation:
1. LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
Abstract
Affinity diagramming is widely applied to analyze qualitative data such as interview transcripts. It involves multiple analytic processes and is often performed collaboratively. Drawing on interviews with three practitioners and upon our own experience, we show how practitioners combine multiple analytic processes and adopt different artifacts to help them analyze their data. Current tools, however, fail to adequately support mixing analytic processes, devices, and collaboration styles. We present a vision and prototype ADQDA, a cross-device, collaborative affinity diagramming tool for qualitative data analysis, implemented using distributed web technologies. We show how this approach enables analysts to appropriate available pertinent digital devices as they fluidly migrate between analytic phases or adopt different methods and representations, all while preserving consistent analysis artifacts. We validate this approach through a set of application scenarios that explore how it enables new ways of analyzing qualitative data that better align with identified analytic practices.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献