Context-aware Distance Measures for Dynamic Networks

Author:

Zhao Yiji1ORCID,Lin Youfang1,Wu Zhihao1,Wang Yang2,Wen Haomin3

Affiliation:

1. Beijing Jiaotong University, China, Beijing Key Laboratory of Traffic Data Analysis and Mining, China, Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, China, and Key Laboratory of Intelligent Passenger Service of Civil Aviation, CAAC, Beijing, China

2. Indiana University of Bloomington, Bloomington, IN, USA

3. Beijing Jiaotong University, Beijing, China

Abstract

Dynamic networks are widely used in the social, physical, and biological sciences as a concise mathematical representation of the evolving interactions in dynamic complex systems. Measuring distances between network snapshots is important for analyzing and understanding evolution processes of dynamic systems. To the best of our knowledge, however, existing network distance measures are designed for static networks. Therefore, when measuring the distance between any two snapshots in dynamic networks, valuable context structure information existing in other snapshots is ignored. To guide the construction of context-aware distance measures, we propose a context-aware distance paradigm, which introduces context information to enrich the connotation of the general definition of network distance measures. A Context-aware Spectral Distance (CSD) is then given as an instance of the paradigm by constructing a context-aware spectral representation to replace the core component of traditional Spectral Distance (SD). In a node-aligned dynamic network, the context effectively helps CSD gain mainly advantages over SD as follows: (1) CSD is not affected by isospectral problems; (2) CSD satisfies all the requirements of a metric, while SD cannot; and (3) CSD is computationally efficient. In order to process large-scale networks, we develop a kCSD that computes top- k eigenvalues to further reduce the computational complexity of CSD. Although kCSD is a pseudo-metric, it retains most of the advantages of CSD. Experimental results in two practical applications, i.e., event detection and network clustering in dynamic networks, show that our context-aware spectral distance performs better than traditional spectral distance in terms of accuracy, stability, and computational efficiency. In addition, context-aware spectral distance outperforms other baseline methods.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference66 articles.

1. Propagation-Based Temporal Network Summarization

2. Role-based graph embeddings;Ahmed Nesreen;IEEE Transactions on Knowledge and Data Engineering (TKDE).,2020

3. Graph based anomaly detection and description: a survey

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Node Clustering on Attributed Graph Using Anchor Sampling Strategy and Debiasing Strategy;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3