Multi-criteria Optimization of Real-time DAGs on Heterogeneous Platforms under P-EDF

Author:

Cucinotta Tommaso1ORCID,Amory Alexandre1ORCID,Ara Gabriele1ORCID,Paladino Francesco1ORCID,Natale Marco Di1ORCID

Affiliation:

1. Scuola Superiore Sant’Anna, Italy

Abstract

This article tackles the problem of optimal placement of complex real-time embedded applications on heterogeneous platforms. Applications are composed of directed acyclic graphs of tasks, with each directed-acyclic-graph (DAG) having a minimum inter-arrival period for its activation requests and an end-to-end deadline within which all of the computations need to terminate since each activation. The platforms of interest are heterogeneous power-aware multi-core platforms with Dynamic Voltage and Frequency Scaling (DVFS) capabilities, including big.LITTLE Arm architectures and platforms with GPU or FPGA hardware accelerators with Dynamic Partial Reconfiguration capabilities. Tasks can be deployed on CPUs using partitioned EDF-based scheduling. Additionally, some of the tasks may have an alternate implementation available for one of the accelerators on the target platform, which are assumed to serve requests in non-preemptive FIFO order. The system can be optimized by minimizing power consumption, respecting precise timing constraints, maximizing the applications’ slack, respecting given power consumption constraints, or even a combination of these, in a multi-objective formulation. We propose an off-line optimization of the mentioned problem based on mixed-integer quadratic constraint programming (MIQCP). The optimization provides the DVFS configuration of all the CPUs (or accelerators) capable of frequency switching and the placement to be followed by each task in the DAGs, including the software-vs.-hardware implementation choice for tasks that can be hardware accelerated. For relatively big problems, we developed heuristic solvers capable of providing suboptimal solutions in a significantly reduced time compared to the MIQCP strategy, thus widening the applicability of the proposed framework. We validate the approach by running a set of randomly generated DAGs on Linux under SCHED_DEADLINE, deployed onto two real boards, one with Arm big.LITTLE architecture, the other with FPGA acceleration, verifying that the experimental runs meet the theoretical expectations in terms of timing and power optimization goals.

Funder

EU H2020 project AMPERE

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3