Enhancing Explanaibility in AI: Food Recommender System Use Case

Author:

Tessa Melissa1ORCID,Abchiche Sarah2ORCID,Ferstler Yves Claude3ORCID,Tchappi Igor4ORCID,Benatchba Karima2ORCID,Najjar Amro5ORCID

Affiliation:

1. Ecole nationale supérieure d'informatique d'Alger ESI ex-INI, Algeria and AI Robolab/ICR, University of Luxembourg, Luxembourg

2. Ecole nationale supérieure d'informatique d'Alger ESI ex-INI, Algeria

3. AI Robolab/ICR, University of Luxembourg, Luxembourg

4. AI-Robolab/ICR, Computer Science and Communications, University of Luxembourg, Luxembourg

5. ITIS, Luxembourg Institute of Science and Technology, Luxembourg

Publisher

ACM

Reference36 articles.

1. Marco Ancona , Enea Ceolini , Cengiz Öztireli , and Markus Gross . 2017. Towards better understanding of gradient-based attribution methods for deep neural networks. arXiv preprint arXiv:1711.06104 ( 2017 ). Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. 2017. Towards better understanding of gradient-based attribution methods for deep neural networks. arXiv preprint arXiv:1711.06104 (2017).

2. Alejandro Barredo Arrieta , Natalia Díaz-Rodríguez , Javier Del Ser , Adrien Bennetot , Siham Tabik , Alberto Barbado , Salvador García , Sergio Gil-López , Daniel Molina , Richard Benjamins , 2020. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information fusion 58 ( 2020 ), 82–115. Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, 2020. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information fusion 58 (2020), 82–115.

3. A surrogate-model-based method for constrained optimization

4. Sentiment analysis using rule-based and case-based reasoning

5. Tom B. Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray Benjamin Chess Jack Clark Christopher Berner Sam McCandlish Alec Radford Ilya Sutskever and Dario Amodei. 2020. Language Models are Few-Shot Learners. arxiv:2005.14165 [cs.CL] Tom B. Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray Benjamin Chess Jack Clark Christopher Berner Sam McCandlish Alec Radford Ilya Sutskever and Dario Amodei. 2020. Language Models are Few-Shot Learners. arxiv:2005.14165 [cs.CL]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unwinding AI's Moral Maze: Hypertext's Ethical Potential;Proceedings of the 35th ACM Conference on Hypertext and Social Media;2024-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3