Multi-Subject 3D Human Mesh Construction Using Commodity WiFi

Author:

Wang Yichao1ORCID,Ren Yili2ORCID,Yang Jie3ORCID

Affiliation:

1. Florida State University, Tallahassee, Florida, USA

2. University of South Florida, Tampa, Florida, USA

3. University of Electronic Science and Technology of China, Chengdu, Sichuan, China

Abstract

This paper introduces MultiMesh, a multi-subject 3D human mesh construction system based on commodity WiFi. Our system can reuse commodity WiFi devices in the environment and is capable of working in non-line-of-sight (NLoS) conditions compared with the traditional computer vision-based approach. Specifically, we leverage an L-shaped antenna array to generate the two-dimensional angle of arrival (2D AoA) of reflected signals for subject separation in the physical space. We further leverage the angle of departure and time of flight of the signal to enhance the resolvability for precise separation of close subjects. Then we exploit information from various signal dimensions to mitigate the interference of indirect reflections according to different signal propagation paths. Moreover, we employ the continuity of human movement in the spatial-temporal domain to track weak reflected signals of faraway subjects. Finally, we utilize a deep learning model to digitize 2D AoA images of each subject into the 3D human mesh. We conducted extensive experiments in real-world multi-subject scenarios under various environments to evaluate the performance of our system. For example, we conduct experiments with occlusion and perform human mesh construction for different distances between two subjects and different distances between subjects and WiFi devices. The results show that MultiMesh can accurately construct 3D human meshes for multiple users with an average vertex error of 4cm. The evaluations also demonstrate that our system could achieve comparable performance for unseen environments and people. Moreover, we also evaluate the accuracy of spatial information extraction and the performance of subject detection. These evaluations demonstrate the robustness and effectiveness of our system.

Publisher

Association for Computing Machinery (ACM)

Reference44 articles.

1. Capturing the human figure through a wall

2. Ankur Agarwal and Bill Triggs. 2005. Recovering 3D human pose from monocular images. IEEE transactions on pattern analysis and machine intelligence 28, 1 (2005), 44--58.

3. SCAPE

4. Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

5. YOLACT: Real-Time Instance Segmentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SpaceBeat: Identity-aware Multi-person Vital Signs Monitoring Using Commodity WiFi;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3