Predictable Shared Cache Management for Multi-Core Real-Time Virtualization

Author:

Kim Hyoseung1ORCID,Rajkumar Ragunathan (Raj)2

Affiliation:

1. University of California, Riverside, CA, USA

2. Carnegie Mellon University, PA, USA

Abstract

Real-time virtualization has gained much attention for the consolidation of multiple real-time systems onto a single hardware platform while ensuring timing predictability. However, a shared last-level cache (LLC) on modern multi-core platforms can easily hamper the timing predictability of real-time virtualization due to the resulting temporal interference among consolidated workloads. Since such interference caused by the LLC is highly variable and may have not even existed in legacy systems to be consolidated, it poses a significant challenge for real-time virtualization. In this article, we propose a predictable shared cache management framework for multi-core real-time virtualization. Our framework introduces two hypervisor-level techniques, vLLC and vColoring, that enable the cache allocation of individual tasks running in a virtual machine (VM), which is not achievable by the current state of the art. Our framework also provides a cache management scheme that determines cache allocation to tasks, designs VMs in a cache-aware manner, and minimizes the aggregated utilization of VMs to be consolidated. As a proof of concept, we implemented vLLC and vColoring in the KVM hypervisor running on x86 and ARM multi-core platforms. Experimental results with three different guest OSs (i.e., Linux/RK, vanilla Linux, and MS Windows Embedded) show that our techniques can effectively control the cache allocation of tasks in VMs. Our cache management scheme yields a significant utilization benefit compared to other approaches while satisfying timing constraints.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Co-Located Parallel Scheduling of Threads to Optimize Cache Sharing;2023 IEEE Real-Time Systems Symposium (RTSS);2023-12-05

2. Evaluation of the Multicore Performance Capabilities of the Next Generation Flight Computers;2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC);2023-10-01

3. Lazy Load Scheduling for Mixed-criticality Applications in Heterogeneous MPSoCs;ACM Transactions on Embedded Computing Systems;2023-05-13

4. ZeroCost-LLC: Shared LLCs at No Cost to WCL;2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS);2023-05

5. Reestablishing Page Placement Mechanisms for Nested Virtualization;IEEE Transactions on Cloud Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3