Power consumption estimation of CPU and peripheral components in virtual machines

Author:

Versick Daniel1,Waßmann Ingolf1,Tavangarian Djamshid1

Affiliation:

1. University of Rostock, Rostock, Germany

Abstract

Energy consumption of IT increased continuously during the last decades. Numerous works have been accomplished for improving energy efficiency of hardware whereas software energy efficiency has been ignored for a long time. This contribution presents a novel approach for estimating energy consumption of computer systems in dependency of software-caused workloads in different execution environments. The system is the basis for automatic optimization of software execution in an energy-efficient way by finding the best-suiting host computer (and best-suiting peripheral devices). Thus, it opens novel ways to further improve energy-efficiency of IT systems by migrating software-caused load to an energy-efficient target. Exemplary, the approach is tested in a virtualized data center environment, where virtual machines are the applications. The presented approach is a vehicle for automatically computing an energy-efficient virtual machine placement. The paper presents a new algorithm for estimating virtual machine power consumption, which consists of CPU power consumption estimation as well as power usage estimation of peripheral components like hard disk drive and network interface controller. The accuracy of the presented approach is proved by means of measurements.

Funder

Ministry of Economics, Labor, and Tourism of the German Federal State Mecklenburg Western-Pomerania by financial means of ESF and ERDF

Publisher

Association for Computing Machinery (ACM)

Reference14 articles.

1. Xen and the art of virtualization

2. IOzone Filesystem Benchmark. http://www.iozone.org Aug. 2013 IOzone Filesystem Benchmark. http://www.iozone.org Aug. 2013

3. Optimizing communication and cooling costs in HPC data centers via intelligent job allocation

4. Virtual machine power metering and provisioning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3