Studying Self-Care with Generative AI Tools: Lessons for Design

Author:

Capel Tara1ORCID,Ploderer Bernd2ORCID,Bircanin Filip3ORCID,Hanmer Simon4ORCID,Yates Jamie Paige5ORCID,Wang Jiaxuan6ORCID,Khor Kai Ling6ORCID,Leong Tuck Wah7ORCID,Wadley Greg8ORCID,Newcomb Michelle6ORCID

Affiliation:

1. University of Edinburgh, United Kingdom and Queensland University of Technology, Australia

2. School of Computer Science, Queensland University of Technology (QUT), Australia

3. Department of Informatics, King's College London, United Kingdom and Queensland University of Technology, Australia

4. Queensland University of Technology (QUT), Australia

5. Faculty of Science, Queensland University of Technology, Australia

6. Queensland University of Technology, Australia

7. School of Computing Technologies, RMIT University, Australia and Faculty of Engineering and IT, University Technology Sydney, Australia

8. School of Computing and Information Systems, The University of Melbourne, Australia

Publisher

ACM

Reference59 articles.

1. “No Amount of Baths Is Gonna Make You Feel Better”: Seeking Balance, Wholeness, and Well-being in Everyday Self-Care

2. Victor Nikhil Antony and Chien-Ming Huang. 2023. Id. 8: Co-Creating Visual Stories with Generative Ai. arXiv preprint arXiv:2309.14228.

3. Amid Ayobi, Paul Marshall, Anna L Cox and Yunan Chen. 2017. Quantifying the Body and Caring for the Mind: Self-Tracking in Multiple Sclerosis. In Proceedings of Proceedings of the 2017 CHI conference on human factors in computing systems. 6889-6901. http://dx.doi.org/10.1145/3025453.3025869

4. Amid Ayobi, Tobias Sonne, Paul Marshall and Anna L. Cox. 2018. Flexible and Mindful Self-Tracking: Design Implications from Paper Bullet Journals. In Proceedings of Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, Montreal QC, Canada, Paper 28. http://dx.doi.org/10.1145/3173574.3173602

5. G. Bell, J. Burgess, J. Thomas and S. Sadiq. 2023. Rapid Response Information Report: Generative Ai - Language Models (Llms) and Multimodal Foundation Models (Mfms). Australian Council of Learned Academies, 2023.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3