Affiliation:
1. U.S. Naval Research Laboratory, DC, USA
2. University of Minnesota, MN, USA
3. Georgetown University, DC, USA
Abstract
Tor’s growing popularity and user diversity has resulted in network performance problems that are not well understood, though performance is understood to be a significant factor in Tor’s security. A large body of work has attempted to solve performance problems without a complete understanding of where congestion occurs in Tor. In this article, we first study congestion in Tor at individual relays as well as along the entire end-to-end Tor path and find that congestion occurs almost exclusively in egress kernel socket buffers. We then analyze Tor’s socket interactions and discover two major contributors to Tor’s congestion: Tor writes sockets sequentially, and Tor writes as much as possible to each socket. To improve Tor’s performance, we design, implement, and test KIST: a new socket management algorithm that uses real-time kernel information to
dynamically compute the amount to write
to each socket while considering
all circuits of all writable sockets
when scheduling cells. We find that, in the medians, KIST reduces circuit congestion by more than 30%, reduces network latency by 18%, and increases network throughput by nearly 10%. We also find that client and relay performance with KIST improves as more relays deploy it and as network load and packet loss rates increase. We analyze the security of KIST and find an acceptable performance and security tradeoff, as it does not significantly affect the outcome of well-known latency, throughput, and traffic correlation attacks. KIST has been merged and configured as the default socket scheduling algorithm in Tor version 0.3.2.1-alpha (released September 18, 2017) and became stable in Tor version 0.3.2.9 (released January 9, 2018). While our focus is Tor, our techniques and observations should help analyze and improve overlay and application performance, both for security applications and in general.
Funder
National Science Foundation
Defense Advanced Research Project Agency
Space and Naval Warfare Systems Center Pacific
Office of Naval Research
Department of Homeland Security (DHS) Science and Technology Directorate, Homeland Security Advanced Research Projects Agency, Cyber Security Division
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,General Computer Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献