A Survey on Video Moment Localization

Author:

Liu Meng1ORCID,Nie Liqiang2ORCID,Wang Yunxiao3ORCID,Wang Meng4ORCID,Rui Yong5ORCID

Affiliation:

1. Shandong Jianzhu University, Jinan, Shandong Province, China

2. Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong Province, China

3. Shandong University, Qingdao, Shandong Province, China

4. Hefei University of Technology, Tunxi Road, Baohe District, Hefei, Anhui Province, China

5. Lenovo Company Ltd., Xibeiwang East Road, Haidian District, Beijing, China

Abstract

Video moment localization, also known as video moment retrieval, aims to search a target segment within a video described by a given natural language query. Beyond the task of temporal action localization whereby the target actions are pre-defined, video moment retrieval can query arbitrary complex activities. In this survey paper, we aim to present a comprehensive review of existing video moment localization techniques, including supervised, weakly supervised, and unsupervised ones. We also review the datasets available for video moment localization and group results of related work. In addition, we discuss promising future directions for this field, in particular large-scale datasets and interpretable video moment localization models.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation for Distinguished Young Scholars

Major Basic Research Project of Natural Science Foundation of Shandong Province

Science and Technology Innovation Program for Distinguished Young Scholars of Shandong Province Higher Education Institutions

Professors of Shandong Jianzhu University

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Granularity Interaction and Integration Network for Video Question Answering;IEEE Transactions on Circuits and Systems for Video Technology;2023-12

2. Do Vision-Language Transformers Exhibit Visual Commonsense? An Empirical Study of VCR;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

3. Temporal Sentence Grounding in Videos: A Survey and Future Directions;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-08

4. FedVMR: A New Federated Learning Method for Video Moment Retrieval;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3