SAMAF

Author:

Báez-Suárez Abraham1ORCID,Shah Nolan2,Nolazco-Flores Juan Arturo3,Huang Shou-Hsuan S.2,Gnawali Omprakash2,Shi Weidong2

Affiliation:

1. ITESM, MX and Univ. of Houston, Texas, USA

2. Univ. of Houston, Texas, USA

3. ITESM, MX

Abstract

Audio fingerprinting techniques were developed to index and retrieve audio samples by comparing a content-based compact signature of the audio instead of the entire audio sample, thereby reducing memory and computational expense. Different techniques have been applied to create audio fingerprints; however, with the introduction of deep learning, new data-driven unsupervised approaches are available. This article presents Sequence-to-Sequence Autoencoder Model for Audio Fingerprinting (SAMAF), which improved hash generation through a novel loss function composed of terms: Mean Square Error, minimizing the reconstruction error; Hash Loss, minimizing the distance between similar hashes and encouraging clustering; and Bitwise Entropy Loss, minimizing the variation inside the clusters. The performance of the model was assessed with a subset of VoxCeleb1 dataset, a“speech in-the-wild” dataset. Furthermore, the model was compared against three baselines: Dejavu, a Shazam-like algorithm; Robust Audio Fingerprinting System (RAFS), a Bit Error Rate (BER) methodology robust to time-frequency distortions and coding/decoding transformations; and Panako, a constellation-based algorithm adding time-frequency distortion resilience. Extensive empirical evidence showed that our approach outperformed all the baselines in the audio identification task and other classification tasks related to the attributes of the audio signal with an economical hash size of either 128 or 256 bits for one second of audio.

Funder

North Atlantic Treaty Organization (NATO) Science for Peace and Security Program

Department of Homeland Security

University of Houston I2C Lab

AWS Cloud Credits for Research

Mexican National Council for Science and Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference47 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. Software. Retrieved from https://www.tensorflow.org/. Version 1.13.0. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. Software. Retrieved from https://www.tensorflow.org/. Version 1.13.0.

2. MASK: Robust Local Features for Audio Fingerprinting

3. Chris Bagwell. 2015. SoX—Sound eXchange. Software. Retrieved from http://gts.sourceforge.net/ Version 14.4.2. Chris Bagwell. 2015. SoX—Sound eXchange. Software. Retrieved from http://gts.sourceforge.net/ Version 14.4.2.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metric Learning with Sequence-to-sequence Autoencoder for Content-based Music Identification;ITM Web of Conferences;2024

2. Accuracy comparisons of fingerprint based song recognition approaches using very high granularity;Multimedia Tools and Applications;2023-03-21

3. Pseudo-Broadcast Music-Speech and Cuesheet Dataset for Background Music Identification/Separation/Detection in TV Broadcast Audio;Journal of Digital Contents Society;2023-01-31

4. A Simple and Efficient method for Dubbed Audio Sync Detection using Compressive Sensing;2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW);2023-01

5. Pied Piper: Meta Search for Music;Innovations in Computational Intelligence and Computer Vision;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3