Mostly Automated Proof Repair for Verified Libraries

Author:

Gopinathan Kiran1ORCID,Keoliya Mayank1ORCID,Sergey Ilya1ORCID

Affiliation:

1. National University of Singapore, Singapore

Abstract

The cost of maintaining formally specified and verified software is widely considered prohibitively high due to the need to constantly keep code and the proofs of its correctness in sync—the problem known as proof repair . One of the main challenges in automated proof repair for evolving code is to infer invariants for a new version of a once verified program that are strong enough to establish its full functional correctness. In this work, we present the first proof repair methodology for higher-order imperative functions, whose initial versions were verified in the Coq proof assistant and whose specifications remained unchanged. Our proof repair procedure is based on the combination of dynamic program alignment, enumerative invariant synthesis, and a novel technique for efficiently pruning the space of invariant candidates, dubbed proof-driven testing , enabled by the constructive nature of Coq’s proof certificates. We have implemented our approach in a mostly-automated proof repair tool called Sisyphus. Given an OCaml function verified in Coq and its unverified new version, Sisyphus produces a Coq proof for the new version, discharging most of the new proof goals automatically and suggesting high-confidence obligations for the programmer to prove for the cases when automation fails. We have evaluated Sisyphus on 10 OCaml programs taken from popular libraries, that manipulate arrays and mutable data structures, considering their verified original and unverified evolved versions. Sisyphus has managed to repair proofs for all those functions, suggesting correct invariants and generating a small number of easy-to-prove residual obligations.

Funder

Singapore Ministry of Education

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3