Practical Dynamic Extension for Sampling Indexes

Author:

Rumbaugh Douglas B.1ORCID,Xie Dong1ORCID

Affiliation:

1. Penn State University, University Park, PA, USA

Abstract

The execution of analytical queries on massive datasets presents challenges due to long response times and high computational costs. As a result, the analysis of representative samples of data has emerged as an attractive alternative; this avoids the cost of processing queries against the entire dataset, while still producing statistically valid results. Unfortunately, the sampling techniques in common use sacrifice either sample quality or performance, and so are poorly suited for this task. However, it is possible to build high quality sample sets efficiently with the assistance of indexes. This introduces a new challenge: real-world data is subject to continuous update, and so the indexes must be kept up to date. This is difficult, because existing sampling indexes present a dichotomy; efficient sampling indexes are difficult to update, while easily updatable indexes have poor sampling performance. This paper seeks to address this gap by proposing a general and practical framework for extending most sampling indexes with efficient update support, based on splitting indexes into smaller shards, combined with a systematic approach to the periodic reconstruction. The framework's design space is examined, with an eye towards exploring trade-offs between update performance, sampling performance, and memory usage. Three existing static sampling indexes are extended using this framework to support updates, and the generalization of the framework to concurrent operations and larger-than-memory data is discussed. Through a comprehensive suite of benchmarks, the extended indexes are shown to match or exceed the update throughput of state-of-the-art dynamic baselines, while presenting significant improvements in sampling latency.

Publisher

Association for Computing Machinery (ACM)

Reference54 articles.

1. 2023. Delicious Dataset. http://konect.cc/networks/delicious-ti/ 2023. Delicious Dataset. http://konect.cc/networks/delicious-ti/

2. 2023. Open Street Map Dataset. https://planet.openstreetmap.org/ 2023. Open Street Map Dataset. https://planet.openstreetmap.org/

3. 2023. PostgreSQL Documentation. https://www.postgresql.org/docs/15/sql-select.html 2023. PostgreSQL Documentation. https://www.postgresql.org/docs/15/sql-select.html

4. 2023. Twitter Dataset. https://github.com/ANLAB-KAIST/traces/releases/tag/twitter_rv.net 2023. Twitter Dataset. https://github.com/ANLAB-KAIST/traces/releases/tag/twitter_rv.net

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Systematic Index Dynamization;Proceedings of the VLDB Endowment;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3