Streaming irregular arrays

Author:

Clifton-Everest Robert1,McDonell Trevor L.1,Chakravarty Manuel M. T.1,Keller Gabriele1

Affiliation:

1. UNSW, Australia

Abstract

Previous work has demonstrated that it is possible to generate efficient and highly parallel code for multicore CPUs and GPUs from combinator-based array languages for a range of applications. That work, however, has been limited to operating on flat, rectangular structures without any facilities for irregularity or nesting. In this paper, we show that even a limited form of nesting provides substantial benefits both in terms of the expressiveness of the language (increasing modularity and providing support for simple irregular structures) and the portability of the code (increasing portability across resource-constrained devices, such as GPUs). Specifically, we generalise Blelloch's flattening transformation along two lines: (1) we explicitly distinguish between definitely regular and potentially irregular computations; and (2) we handle multidimensional arrays. We demonstrate the utility of this generalisation by an extension of the embedded array language Accelerate to include irregular streams of multidimensional arrays. We discuss code generation, optimisation, and irregular stream scheduling as well as a range of benchmarks on both multicore CPUs and GPUs.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference40 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jefrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geofrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). htp://tensorflow.org/ Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jefrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geofrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). htp://tensorflow.org/

2. Lars Bergstrom Matthew Fluet Mike Rainey John Reppy Stephen Rosen and Adam Shaw. 2013. Data-Only Flattening for Nested Data Parallelism. In PPoPP’13: Principles and Practice of Parallel Programming. ACM 81ś92. 10.1145/2442516.2442525 Lars Bergstrom Matthew Fluet Mike Rainey John Reppy Stephen Rosen and Adam Shaw. 2013. Data-Only Flattening for Nested Data Parallelism. In PPoPP’13: Principles and Practice of Parallel Programming. ACM 81ś92. 10.1145/2442516.2442525

3. Nested data-parallelism on the gpu

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaiwan: A size-polymorphic typesystem for GPU programs;Science of Computer Programming;2023-08

2. On Generating Out-Of-Core GPU Code for Multi-Dimensional Array Operations;Proceedings of the 34th Symposium on Implementation and Application of Functional Languages;2022-08-31

3. In-Place-Folding of Non-Scalar Hyper-Planes of Multi-Dimensional Arrays;33rd Symposium on Implementation and Application of Functional Languages;2021-09

4. Generating high performance code for irregular data structures using dependent types;Proceedings of the 9th ACM SIGPLAN International Workshop on Functional High-Performance and Numerical Computing;2021-08-22

5. Generating fast sparse matrix vector multiplication from a high level generic functional IR;Proceedings of the 29th International Conference on Compiler Construction;2020-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3