Approximating Geometric Knapsack via L-packings

Author:

Gálvez Waldo1,Grandoni Fabrizio2,Ingala Salvatore2,Heydrich Sandy3,Khan Arindam4,Wiese Andreas5

Affiliation:

1. Department of Computer Science, Technical University of Munich, Garching, Germany

2. IDSIA and USI-SUPSI, Lugano-Viganello, Switzerland

3. Department of Optimization, Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany

4. Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

5. Department of Industrial Engineering and Center for Mathematical Modeling,Universidad de Chile, Chile

Abstract

We study the two-dimensional geometric knapsack problem, in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is 2+ε [Jansen and Zhang, SODA 2004]. In this article we present a polynomial-time 17/9+ε < 1.89-approximation, which improves to 558/325+ε < 1.72 in the cardinality case. Prior results pack items into a constant number of rectangular containers that are filled via greedy strategies. We deviate from this setting and show that there exists a large profit solution where items are packed into a constant number of containers plus one L-shaped region at the boundary of the knapsack containing narrow-high items and thin-wide items. These items may interact in complex manners at the corner of the L. The best-known approximation ratio for the subproblem in the L-shaped region is 2+ε (via a trivial reduction to one-dimensional knapsack); hence, as a second major result we present a PTAS for this case that we believe might be of broader utility. We also consider the variant with rotations, where items can be rotated by 90 degrees. Again, the best-known polynomial-time approximation factor (even for the cardinality case) is 2+ε [Jansen and Zhang, SODA 2004]. We present a polynomial-time (3/2+ε)-approximation for this setting, which improves to 4/3+ε in the cardinality case.

Funder

SNSF

European Research Council

Google Europe PhD Fellowship

ANID Fondecyt Regular

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference35 articles.

1. Hardness of approximation for strip packing;Adamaszek Anna;ACM Trans. Comput. Theory,2017

2. A new approximation method for set covering problems, with applications to multidimensional bin packing;Bansal Nikhil;SIAM J. Comput.,2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3