Quantized Adam with Error Feedback

Author:

Chen Congliang1,Shen Li2,Huang Haozhi3,Liu Wei4

Affiliation:

1. The Chinese University of Hong Kong, Shenzhen, Guangdong, China

2. JD Explore Academy, Beijing, China

3. Tencent AI Lab, Guangdong, China

4. Tencent, Guangdong, China

Abstract

In this article, we present a distributed variant of an adaptive stochastic gradient method for training deep neural networks in the parameter-server model. To reduce the communication cost among the workers and server, we incorporate two types of quantization schemes, i.e., gradient quantization and weight quantization, into the proposed distributed Adam. In addition, to reduce the bias introduced by quantization operations, we propose an error-feedback technique to compensate for the quantized gradient. Theoretically, in the stochastic nonconvex setting, we show that the distributed adaptive gradient method with gradient quantization and error feedback converges to the first-order stationary point, and that the distributed adaptive gradient method with weight quantization and error feedback converges to the point related to the quantized level under both the single-worker and multi-worker modes. Last, we apply the proposed distributed adaptive gradient methods to train deep neural networks. Experimental results demonstrate the efficacy of our methods.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference48 articles.

1. Amitabh Basu Soham De Anirbit Mukherjee and Enayat Ullah. 2018. Convergence guarantees for RMSProp and Adam in non-convex optimization and an empirical comparison to Nesterov acceleration. arXiv:1807.06766. Amitabh Basu Soham De Anirbit Mukherjee and Enayat Ullah. 2018. Convergence guarantees for RMSProp and Adam in non-convex optimization and an empirical comparison to Nesterov acceleration. arXiv:1807.06766.

2. Xiangyi Chen Sijia Liu Ruoyu Sun and Mingyi Hong. 2018. On the convergence of a class of Adam-type algorithms for non-convex optimization. arXiv:1808.02941. Xiangyi Chen Sijia Liu Ruoyu Sun and Mingyi Hong. 2018. On the convergence of a class of Adam-type algorithms for non-convex optimization. arXiv:1808.02941.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3