Engaging with Robotic Swarms

Author:

St-Onge David1,Côté-Allard Ulysse2,Glette Kyrre3,Gosselin Benoit2,Beltrame Giovanni1

Affiliation:

1. MISTLab, Department of Computer Engineering and Software Engineering, École Polytechnique de Montréal, Montreal, QC, Canada

2. Department of Electrical Engineering, Laval University, QC, Canada

3. RITMO, Department of Informatics, University of Oslo, Blindern, Oslo, Norway

Abstract

In recent years, researchers have explored human body posture and motion to control robots in more natural ways. These interfaces require the ability to track the body movements of the user in three dimensions. Deploying motion capture systems for tracking tends to be costly and intrusive and requires a clear line of sight, making them ill adapted for applications that need fast deployment. In this article, we use consumer-grade armbands, capturing orientation information and muscle activity, to interact with a robotic system through a state machine controlled by a body motion classifier. To compensate for the low quality of the information of these sensors, and to allow a wider range of dynamic control, our approach relies on machine learning. We train our classifier directly on the user to recognize (within minutes) which physiological state his or her body motion expresses. We demonstrate that on top of guaranteeing faster field deployment, our algorithm performs better than all comparable algorithms, and we detail its configuration and the most significant features extracted. As the use of large groups of robots is growing, we postulate that their interaction with humans can be eased by our approach. We identified the key factors to stimulate engagement using our system on 27 participants, each creating his or her own set of expressive motions to control a swarm of desk robots. The resulting unique dataset is available online together with the classifier and the robot control scripts.

Funder

NSERC

Research Council of Norway

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3