DLRF-Net: A Progressive Deep Latent Low-Rank Fusion Network for Hierarchical Subspace Discovery

Author:

Zhang Zhao1,Ren Jiahuan1,Zhang Haijun2,Zhang Zheng2ORCID,Liu Guangcan3,Yan Shuicheng4

Affiliation:

1. School of Computer Science and Technology, Soochow University, Suzhou 215006, China

2. Department of Computer Science, Harbin Institute of Technology, Shenzhen 518055, China

3. School of Information and Control, Nanjing University of Information Science and Technology, Nanjing, China

4. YITU Technology, Shanghai, China

Abstract

Low-rank coding-based representation learning is powerful for discovering and recovering the subspace structures in data, which has obtained an impressive performance; however, it still cannot obtain deep hidden information due to the essence of single-layer structures. In this article, we investigate the deep low-rank representation of images in a progressive way by presenting a novel strategy that can extend existing single-layer latent low-rank models into multiple layers. Technically, we propose a new progressive Deep Latent Low-Rank Fusion Network (DLRF-Net) to uncover deep features and the clustering structures embedded in latent subspaces. The basic idea of DLRF-Net is to progressively refine the principal and salient features in each layer from previous layers by fusing the clustering and projective subspaces, respectively, which can potentially learn more accurate features and subspaces. To obtain deep hidden information, DLRF-Net inputs shallow features from the last layer into subsequent layers. Then, it aims at recovering the hierarchical information and deeper features by respectively congregating the subspaces in each layer of the network. As such, one can also ensure the representation learning of deeper layers to remove the noise and discover the underlying clean subspaces, which will be verified by simulations. It is noteworthy that the framework of our DLRF-Net is general and is applicable to most existing latent low-rank representation models, i.e., existing latent low-rank models can be easily extended to the multilayer scenario using DLRF-Net. Extensive results on real databases show that our framework can deliver enhanced performance over other related techniques.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference61 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SQLite Encryption Method for Embedded Databases Based on Chaos Algorithm;Journal of Applied Mathematics;2023-02-17

2. Deep Clustering Analysis via Dual Variational Autoencoder With Spherical Latent Embeddings;IEEE Transactions on Neural Networks and Learning Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3