Annotation propagation in image databases using similarity graphs

Author:

Houle Michael E.1,Oria Vincent2,Satoh Shin'ichi1,Sun Jichao2

Affiliation:

1. National Institute of Informatics, Tokyo, Japan

2. New Jersey Institute of Technology, Newark, NJ

Abstract

The practicality of large-scale image indexing and querying methods depends crucially upon the availability of semantic information. The manual tagging of images with semantic information is in general very labor intensive, and existing methods for automated image annotation may not always yield accurate results. The aim of this paper is to reduce to a minimum the amount of human intervention required in the semantic annotation of images, while preserving a high degree of accuracy. Ideally, only one copy of each object of interest would be labeled manually, and the labels would then be propagated automatically to all other occurrences of the objects in the database. To this end, we propose an influence propagation strategy, SW-KProp , that requires no human intervention beyond the initial labeling of a subset of the images. SW-KProp distributes semantic information within a similarity graph defined on all images in the database: each image iteratively transmits its current label information to its neighbors, and then readjusts its own label according to the combined influences of its neighbors. SW-KProp influence propagation can be efficiently performed by means of matrix computations, provided that pairwise similarities of images are available. We also propose a variant of SW-KProp which enhances the quality of the similarity graph by selecting a reduced feature set for each prelabeled image and rebuilding its neighborhood. The performances of the SW-KProp method and its variant were evaluated against several competing methods on classification tasks for three image datasets: a handwritten digit dataset, a face dataset and a web image dataset. For the digit images, SW-KProp and its variant performed consistently better than the other methods tested. For the face and web images, SW-KProp outperformed its competitors for the case when the number of prelabeled images was relatively small. The performance was seen to improve significantly when the feature selection strategy was applied.

Funder

Japan Society for the Promotion of Science

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-Edge Graphs;ACM Transactions on Information Systems;2022-01-11

2. Semi-supervised False Data Injection Attacks Detection in Smart Grid;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2022

3. The Influence of Hubness on NN-Descent;International Journal on Artificial Intelligence Tools;2019-09

4. BTDP;ACM Transactions on Multimedia Computing, Communications, and Applications;2019-08-12

5. Affective image classification via semi-supervised learning from web images;Multimedia Tools and Applications;2018-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3