Online Distributed Schedule Randomization to Mitigate Timing Attacks in Industrial Control Systems

Author:

Samaddar Ankita1ORCID,Easwaran Arvind1ORCID

Affiliation:

1. Nanyang Technological University, Singapore

Abstract

Industrial control systems (ICSs) consist of a large number of control applications that are associated with periodic real-time flows with hard deadlines. To facilitate large-scale integration, remote control, and co-ordination, wireless sensor and actuator networks form the main communication framework in most ICSs. Among the existing wireless sensor and actuator network protocols, WirelessHART is the most suitable protocol for real-time applications in ICSs. The communications in a WirelessHART network are time-division multiple access based. To satisfy the hard deadlines of the real-time flows, the schedule in a WirelessHART network is pre-computed. The same schedule is repeated over every hyperperiod (i.e., lowest common multiple of the periods of the flows). However, a malicious attacker can exploit the repetitive behavior of the flow schedules to launch timing attacks (e.g., selective jamming attacks). To mitigate timing attacks, we propose an online distributed schedule randomization strategy that randomizes the time-slots in the schedules at each network device without violating the flow deadlines, while ensuring the closed-loop control stability. To increase the extent of randomization in the schedules further, and to reduce the energy consumption of the system, we incorporate a period adaptation strategy that adjusts the transmission periods of the flows depending on the stability of the control loops at runtime. We use Kullback-Leibler divergence and prediction probability of slots as two metrics to evaluate the performance of our proposed strategy. We compare our strategy with an offline centralized schedule randomization strategy. Experimental results show that the schedules generated by our strategy are 10% to 15% more diverse and 5% to 10% less predictable on average compared to the offline strategy when the number of base schedules and keys vary between 4 and 6 and 12 and 32, respectively, under all slot utilization (number of occupied slots in a hyperperiod). On incorporating period adaptation, the divergence in the schedules reduceat each period increase with 46% less power consumption on average.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3