A polynomial time algorithm for computing all minimal decompositions of a polynomial

Author:

Blankertz Raoul

Abstract

The composition of two polynomials g ( h ) = g o h is a polynomial. For a given polynomial f we are interested in finding a functional decomposition f = g o h . In this paper an algorithm is described, which computes all minimal decompositions in polynomial time. In contrast to many previous decomposition algorithms this algorithm works without restrictions on the degree of the polynomial and the characteristic of the ground field. The algorithm can be iteratively applied to compute all decompositions. It is based on ideas of Landau & Miller (1985) and Zippel (1991). Additionally, an upper bound on the number of minimal decompositions is given.

Publisher

Association for Computing Machinery (ACM)

Reference19 articles.

1. An algorithm for finding the blocks of a permutation group

2. Polynomial decomposition algorithms

3. Raoul Blankertz (2011). Decomposition of Polynomials. Diplomarbeit Universität Bonn Bonn. Modified version available at http://arxiv.org/abs/1107.0687. Raoul Blankertz (2011). Decomposition of Polynomials. Diplomarbeit Universität Bonn Bonn. Modified version available at http://arxiv.org/abs/1107.0687.

4. Compositions and collisions at degreep2

5. Complexity issues in bivariate polynomial factorization

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpolation by decomposable univariate polynomials;Journal of Complexity;2024-12

2. Counting decomposable polynomials with integer coefficients;Monatshefte für Mathematik;2022-09-25

3. The Prouhet–Tarry–Escott problem, indecomposability of polynomials and Diophantine equations;The Ramanujan Journal;2022-04-11

4. Counting invariant subspaces and decompositions of additive polynomials;Journal of Symbolic Computation;2021-07

5. Functional Decomposition Using Principal Subfields;Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation;2017-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3